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Abstract—We present a flexible family of 3D mobility models
suitable for unmanned aerial vehicles (UAV). Based on stochastic
differential equations, the models offer a unique property of
explicitly incorporating the mobility control mechanism and
environmental perturbation, while enabling tractable steady
state solutions for properties such as position and connectivity.
Specifically, motivated by UAV flight data, for a symmetric
mobility model with an arbitrary control mechanism, we derive
the steady state distribution of the distance from the target
position. We provide closed form expressions for the special cases
of the Ornstein-Uhlenbeck (OU) process and on-off control (OC).
We extend the model to incorporate imperfect positioning and
asymmetric control. For a practically relevant scenario of partial
symmetry (such as in the x-y plane), we present steady state
position results for the OU control. Building on these results,
we derive UAV connectivity probability results based on a SNR
criterion in a Rayleigh fading environment.

I. INTRODUCTION

In the modelling of three-dimensional (3D) mobility for
mobile devices it is difficult to construct models which are both
tractable and general. In broad terms, there are two scenarios
of interest. The first, Scenario 1, concerns high precision
applications where accurate modelling of mobility is required
in small volumes. The second, Scenario 2, concerns models to
provide mobility over wide areas. Obvious examples include
the use of unmanned aerial vehicles (UAVs) in high precision
agriculture (eg. tree pruning applications [1]) and swarms of
UAVs operating over a wide geographical area [2]. In the first
scenario, it is useful for the model to allow different control
mechanisms for the mobile device and to include the effects of
imperfect navigation (eg. GPS error). In the second scenario,
tractable steady state distributions for position and distance are
important as they lead to results on connectivity and signal-
to-noise-ratio (SNR) for communication links.

To date a variety of models have been used in the literature
for the mobility in ad hoc networks [3] and UAV networks
[4]. Examples include Brownian motion, random direction
[3], [5], random waypoint [6], [7] and Gauss-Markov models
[3], [8]. Recently, to allow for effects of altitude control in
addition to spatial excursions, a mixed mobility model has
been proposed [4] which allows for different behaviour in
the horizontal and vertical directions. Each of these synthetic
models, while allowing analysis, possesses undesirable fea-
tures, such as piecewise motion for waypoint models and

unbounded wandering in Brownian motion. Critically, they
lack the ability to explicitly model the control mechanism
which attempts to return the node to the desired location [9].
Hence, in this paper, we are motivated to create a family of
3D mobility models based on stochastic differential equations
(SDEs) which explicitly allow the use of different control
mechanisms and lead to tractable steady state solutions. The
models presented are trivial for system simulations and allow
analysis of certain system features such as connectivity and
link SNR. We also include the effects of imperfect navigation
into the models. In particular the contributions are as follows.
• For arbitrary, symmetric control, we derive steady state

distance distributions, and closed form expressions for the
special cases of the OU process and on-off control (OC).

• To account for effects such as GPS errors and asym-
metries in 3D mobility, we extend the model to include
imperfect positioning and asymmetric control and pertur-
bation. We derive analytical results for the steady state
distance distribution for OU control as well as simple
closed form solutions for an important case of partial
symmetry (e.g. in the (x− y) plane).

• Building on these results, we present analytical expres-
sions for the connectivity probability of UAVs based on
an SNR criterion in a Rayleigh fading environment.

II. SYMMETRIC 3D MOBILITY MODEL

Consider a device in 3D space located at time t at
(Xt, Yt, Zt) with radial distance from the origin Rt =√
Xt

2 + Yt
2 + Zt

2. We assume the on-board control mech-
anism attempts to maintain position at (0, 0, 0) by moving
the device towards the origin with a velocity v(Rt), which is
solely a function of distance. Hence, as shown in Fig. 1, the
control is symmetric in all dimensions - a typical condition
for Scenario 1. The device undergoes Brownian perturbations
so that the resulting SDEs for position are given by

dXt =
−v(Rt)

Rt
Xtdt+ σdW 1t,

dYt =
−v(Rt)

Rt
Ytdt+ σdW 2t, (1)

dZt =
−v(Rt)

Rt
Ztdt+ σdW 3t,



Fig. 1: 3D model.

where W1t, W2t and W3t are three independent standard
Brownian motion processes, and σ is the perturbation pa-
rameter. The Cartesian coordinates are given by Xt =
Rt cos(θt) cos(φt), Yt = Rt cos(θt) sin(φt), Zt = Rt sin(θt)
where θt is the angle of elevation (θt = sin−1(Zt/Rt)) and
φt is the azimuth angle (φt = tan−1(Yt/Xt)). Now, (1)
is a standard example of a system of SDEs governed by a
multivariate Fokker-Planck (FP) equation [10, Eqs. 4.3.41-
4.3.42]. Using the Fokker-Planck formulation, in Appendix A
we show that the steady state PDF of (Xt, Yt, Zt) is given by:

f(x, y, z) = K0 exp

(
−2V (r)

σ2

)
,

for some constant, K0, where r = (x2 + y2 + z2)1/2 and
V (r) =

∫ r
0
v(τ) dτ .

Employing a Cartesian to polar transformation, established
methods lead to the steady state PDF of Rt,

fR(r) = Kr2 exp

(
−2V (r)

σ2

)
r ≥ 0, (2)

where K is a constant ensuring∫ ∞
0

Kr2 exp

(
−2V (r)

σ2

)
dr = 1. (3)

A. Special Cases

Here, we consider two useful special cases: the OU process
where v(Rt) ∝ Rt and on-off control (OC), where v(·) is
either ON (constant velocity) or OFF (no control).
OU: Here, v(Rt) = αRt, so that V (τ) = ατ2/2 and (2)
becomes

fR(r) =
4α3/2

√
πσ3

r2 exp

(
−αr2

σ2

)
r ≥ 0. (4)

This leads by simple integration to the CDF:

FR(r) = erf

(√
αr2

σ2

)
−
√

4αr2

πσ2
exp(−αr2/σ2) r ≥ 0,

(5)

where erf(·) is the error function.

OC: Here, v(Rt) = c if Rt > m and v(Rt) = 0 otherwise.
Hence, the control is ON at constant velocity c when the
displacement exceeds the threshold m and is OFF (zero)
otherwise. Hence, V (τ) = c(τ −m) for τ > m and is zero

otherwise. Substituting into (2) and integrating gives the CDF

FR(r) = Kr3/3, r ≤ m (6)

and

FR(r) =
Km3

3
+
Kσ4

4c3

{
σ4 + 2mcσ2 + 2m2c2 (7)

−
(
σ4 + 2rcσ2 + 2r2c2

)
exp

(
−2c(r −m)

σ2

)}
, r ≥ m,

where K = 12c3[3σ2(σ4+2mcσ2+2m2c2)+4m3c3]−1. Note
that (2) is a completely general solution for the steady state
distance of a device from the origin, with an arbitrary, radially
dependent (symmetric) control mechanism. In Sec. V we show
that symmetric control can be a reasonable model for UAVs
in high precision applications. Note that (2) is given in closed
form, except for the constant K and the function V (r) which
are defined as integrals. For simple control mechanisms, as for
OU and OC, fR(r) and FR(r) are available in closed form.
Similarly any piecewise linear control function can be solved.

III. MOBILITY MODELS WITH IMPERFECT POSITIONING

Consider the case where only imperfect position information
is available at the device - a practical consideration for both
Scenario 1 and Scenario 2. We also extend the mobility model
to include asymmetries in both control and perturbation. This
is motivated by the observation that although symmetry in the
x− y plane is a reasonable model, it is certainly possible for
motion in the z direction to behave differently, in particular
for the large scale deployment of Scenario 2. At time t, the
true position is (Xt, Yt, Zt) but only the errored coordinates,
(X̂t, Ŷt, Ẑt) are available where X̂t = Xt+ε1t, Ŷt = Yt+ε2t,

Ẑt = Zt + ε3t and R̂t =

√
X̂2
t + Ŷ 2

t + Ẑ2
t . The errors are

modelled so that they are Gaussian and smoothly varying with
no drift. The OU model is a convenient approach to providing
these properties. Hence, the error terms are defined by [10]

dεit = −βiεitdt+ sidBit for i = 1, 2, 3, (8)

where the initial error values are zero (εit = 0 for t = 0) and
Bit are iid standard Brownian motion processes. The positive
parameters, βi and si, control the variability of the errors
(possibly different in each dimension) and the steady state
distribution of the errors is εit ∼ N (0, s2i /2βi). With these
positioning errors, the control mechanism in (1) is based on
the estimated positions so that the SDEs extended to the non-
symmetric case become:

dXt =
−v1(R̂t)

R̂t
X̂tdt+ σ1dW 1t,

dYt =
−v2(R̂t)

R̂t
Ŷtdt+ σ2dW 2t, (9)

dZt =
−v3(R̂t)

R̂t
Ẑtdt+ σ3dW 3t,

with the error process given by (8). To the best of our
knowledge there is no tractable solution for the system of



SDEs given by (8) and (9) even for the symmetric case. Hence,
in order to make analytical progress, we consider the classical
OU process in 3D where vi(displacement) ∝ displacement.
This is described by

dXt = −α1X̂tdt+ σ1dW 1t,

dYt = −α2Ŷtdt+ σ2dW 2t, (10)

dZt = −α3Ẑtdt+ σ3dW 3t,

with the error process given by (8). This 6-dimensional process
is separable into three two-dimensional processes, (Xt, ε1t),
(Yt, ε2t) and (Zt, ε3t). Each 2D process is a multivariate OU
process and it is shown in Appendix B that the resulting steady
state distributions are Xt ∼ N (0, λ1), Yt ∼ N (0, λ2) and
Zt ∼ N (0, λ3) where

λi =
σ2
i

2αi
+

αi
(αi + βi)

s2i
2βi

. (11)

This solution clearly demonstrates the effect of position error
and as an example can be rewritten for Xt as

Var(Xt) = Var(Xerror free
t ) +

1

1 + β1/α1
Var(ε1t). (12)

Hence, Var(Xt) ranges form its ideal value, Var(Xerror free
t ) to

its upper limit Var(Xerror free
t ) + Var(ε1t) as the ratio of the

control parameters, β1/α1, changes.
Note that this solution allows different control parameters,

αi, in each dimension, as well as different levels of perturba-
tion, different σi. Similarly the error processes are different
in each dimension. However, the price to be paid for this
generality is that the control mechanism is the simple one
where vi(displacement) ∝ displacement in each dimension.

Unequal λi values: In the general case when the three
values of λi are all different then R2

t is a quadratic form
in Gaussian random variables with the formulation R2

t =
λ1W

2
1 +λ2W

2
2 +λ3W

2
3 , where W1, W2 and W3 are iidN (0, 1)

variables. Hence, R2
t has a known CDF [11, pp. 156]. This

immediately gives the steady state CDF of Rt as:

FR(r) = P (Rt ≤ r) =
∞∑
j=0

ejP (χ2
3+2j ≤ r2/η), (13)

where χ2
k is a Chi-squared random variable with k degrees of

freedom, η is an arbitrary constant and es is given by

es =
1

2s

s−1∑
j=0

Hs−jej , e0 =

√
η3

λ1λ2λ3
, (14)

where Hs =
∑3
j=1(1 − η/λj)s. We adopt the typical choice

of η as η = 3[1/λ1 + 1/λ2 + 1/λ3]−1 [11] and note that
the Chi-squared CDFs required in (13) are known functions
which can be expressed as finite sums or incomplete gamma
functions.

Some equal λi values: In the symmetric case where all λi
values are equal, we default back to Sec. II. Here, R2

t = λ1χ
2
3

and all results are known based on known properties of the
Chi-squared variable. The more interesting case is λ1 = λ2 6=

λ3 where the control and errors are symmetric in the x − y
plane but different in the z direction. Letting U = (W 2

1 +
W 2

2 )/2 and noting that U is exponential with unit mean, we
have

FR(r) = P (2λ1U + λ3W
2
3 ≤ r2), (15)

= E
[
1W3<r/

√
λ3

(
1− exp

(
λ3W

2
3 − r2

2λ1

))]
,

where 1x∈A is the indicator function that equals 1 if x ∈ A
and is zero otherwise. Next, using the fact that V = W 2

3 ∼ χ2
1,

we have the PDF of V which allows (15) to be written as

FR(r) =

∫ r2/λ3

0

[
1− exp

(
λ3v − r2

2λ1

)]
exp(−v/2)

2
√

2πv
dv.

(16)

Using [12, Eq.3.361.1 and 8.252.1], the CDF can be solved
for the two cases, λ1 > λ3 and λ1 < λ3 as:

FR(r) = erf
(√

r2

2λ3

)
−
√
λ1e
−r2/(2λ1)

√
λ1 − λ3

erf
(√

r2(λ1−λ3)
2λ1λ3

)
(17)

and

FR(r) = erf

√ r2

2λ3

− √λ1e−r2/(2λ1)

√
λ3 − λ1

erfi
(√

r2(λ3−λ1)
2λ1λ3

)
(18)

respectively.

IV. CONNECTIVITY

We now examine the probability of connectivity for mobile
devices. Consider a link of distance, Rt, at time t in a Rayleigh
fading environment with path loss exponent, γ. In the absence
of shadowing, the SNR of a single input single output (SISO)
link is SNRt = AR−γt |ht|2, where |ht|2 ∼ Exp(1) and A is a
constant accounting for transmit power, receiver noise, etc. If
connectivity relies on the SNR exceeding a threshold, SNR0,
then the probability of connectivity, Pconn, is given by

Pconn = P
(
AR−γt |ht|2 > SNR0

)
= E

[
P
(
Rt < (A|ht|2/SNR0)1/γ

∣∣ |ht|2)]
=

∫ ∞
0

FR(Bx1/γ)e−xdx, (19)

where B = (A/SNR0)1/γ . Note that (19) assumes that steady
state has been reached and FR(r) is the steady state CDF of
Rt. Computationally, for any value of γ, (19) can be evaluated
via simple numerical integration as the integrand is smooth and
exponentially decaying in the upper tail. However, for the edge
cases of γ = 2 and γ = 4, so-called because 2 ≤ γ ≤ 4 is
the usual range of values for the path loss exponent, analytical
progress using (19) is possible. Two examples are given below.

A. Symmetric Mobility Models

The work in Sec. II mainly focused on high precision
applications where connectivity is not normally a problem.



However, if the model in (1) is applied to environments
where outage is a factor, then a general solution is given by
substituting (2) into (19) which gives

Pconn =

∫ ∞
0

e−x
∫ u(x)

0

Kr2 exp

(
−2V (r)

2

)
drdx, (20)

where u(x) = Bx1/γ and B = (SNR0/A)1/γ . More directly,
if the CDF, FR(r), is known then (19) can be used directly.

As an example, consider the non-linear control mechanism,
OC, and γ = 2. Here, substituting (6) and (7) into (19) gives

Pconn =
1

2

∫ (m/B)2

0

KB2xe−xdx+

∫ ∞
(m/B)2

e−x×(
1− Kσ4

4c2

(
1 +

2cB
√
x

σ2

)
exp

(
−2c(B

√
x−m)/σ2

))
dx.

(21)

In (21), the integrals
∫
x exp(−x)dx and

∫
exp(−x)dx are

trivial. The remaining integrals
∫

exp(−p
√
x − x)dx and∫ √

xexp(−p
√
x−x)dx can be solved using the substitution

v =
√
x, followed by integration by parts and the use of [12,

Eq. 3.322.1]. This gives:

Pconn =
K

2

[
B2 − (m2 +B2)e−(mB )

2]
+ e−(mB )

2

(22)

− Kσ4

4c2
e

2cm
σ2

{(
1 +

2cB

σ2

(
m

B
− cB

σ2

))
e−

2cm
σ2
−(mB )

2

[
1− erf

(
cB

σ2
+
m

B

)] √
π

2

4c3B3

σ6
e
c2B2

σ4

}
.

B. Non-symmetric Mobility Models

More importantly, we consider the connectivity probability
for the models in Sec. III which are designed to apply in
large scale applications. In the most general case where there
is asymmetry in all three dimensions, (13) applies and

Pconn =

∞∑
j=0

ej

∫ ∞
0

P

(
χ2
3+2j ≤

B2x2/γ

η

)
e−xdx.

(23)

For a Chi-squared random variable, the CDF is an incomplete
gamma function and (23) becomes

Pconn =

∞∑
j=0

ej
Γ(j + 3/2)

∫ ∞
0

γ

(
j + 3/2,

B2x2/γ

2η

)
e−xdx.

(24)

For γ = 2, [12, Eq.6.451.1] gives

Pconn =

∞∑
j=0

ej
(
1 + 2η/B2

)−(j+3/2)
. (25)

For γ = 4, we use [12, Eq. 6.454] to give

Pconn=

∞∑
j=0

ej

(
B2

2η
√

2

)j+ 3
2

exp

(
B4

32η2

)
D−j− 3

2

(
B2

2η
√

2

)
,

(26)

where Dν(·) is the parabolic cylinder function [12, Sec.9.24].
In the useful scenario, where there is symmetry in the x, y

plane and the movement in the z direction is more limited,
then (17) holds and

Pconn =

∫ ∞
0

erf
(√

B2x2/γ

2λ3

)
e−xdx (27)

−
∫ ∞
0

√
λ1e
−B2x2/γ/(2λ1)

√
λ1 − λ3

erf
(√

B2x2/γ(λ1−λ3)
2λ1λ3

)
e−xdx.

For γ = 2, using [12, Eq. 6.283.2] we have

Pconn =

√
B2

B2 + 2λ3

[
1− 2λ1

B2 + 2λ1

√
λ1 − λ3
λ1

]
. (28)

For γ = 4, the second integral in (27) is unavailable in
closed form and a series expansion is required. Details are
not provided for reasons of space.

V. NUMERICAL RESULTS

A. UAV flight data set

We begin by looking at an example dataset collected from
an indoor UAV flight in the University of Canterbury Drone
Lab. The quad-rotor UAV has a custom-built air-frame with
a pruning arm for agricultural applications and a total weight
of 5 kg. The main platform is 900 mm long and the diagonal
centre-prop to centre-prop distance is 600 mm. The on-board
control mechanism is a Pixhawk flight controller running PX4.
The position of the UAV is measured using camera vision
techniques giving positional information which is accurate to
1 mm for close range operation (within 1 m) [13]. The 3D
positional data during hovering is measured relative to the
target position, so the x, y, z coordinates are errors from the
desired location. Fig. 2 shows the empirical CDFs of the
x, y, z values. Clearly there are differences for this single
flight in the 3 dimensions, but these differences are relatively
small. This is an example of Scenario 1, where the symmetric
model in Sec. II is applicable. While not shown due to space
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Fig. 2: Empirical CDFs of x, y, z values relative to UAV target
position.



limitations, examining the vertical changes in the z direction
against the distance from the target in the x, y plane, one
notes a negligible correlation of -0.076. This indicates that
the control is essentially separate in each dimension and thus
the separable models in Sec. IV could be applied.

B. Modelling Results

We begin with a symmetric case typical of Scenario 1. Fig.
3 shows the simulated and analytical CDFs of the distance
from the target position for OC and OU control mechanisms
for perfect navigation. For OC, the on velocity c = 1 and the
radial distance threshold m = 1 while for OU the velocity
scaling factor α = 1. The analytical results were computed
using (5) for OU and (6)-(7) for OC. As expected, in the case

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
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1

Fig. 3: Distance from target CDF for OC (c = 1, m = 1) and
OU (α = 1) control; perfect navigation.

of OU control, increasing the control velocity α yields smaller
steady state distance-to-target, as does reducing the distance
threshold for OC. For the OC parameters considered, reducing
the distance threshold m is coupled with reducing the velocity
c, and thus the trend reverses at the high CDF tail.

Fig. 4 shows the simulated and analytical CDFs of the dis-
tance from the target position for the OU control mechanism
for imperfect navigation with unequal λi values, computed
using (11) with si = 1, αi = 1, βi = 1, 3, 10, ∀i and σ1 = 1.3,
σ2 = 1 and σ3 = 0.7. The analytical expressions are computed
using (13) and (14). Predictably, we note that reducing the
variability of positioning errors (i.e., increasing βi) improves
the target position of the UAV, with the performance improve-
ment diminishing for βi > 3.

Fig. 5 shows equivalent results for the case λ1 = λ2 6=
λ3. Here we consider a case where the z-direction errors are
smaller than those in the x−y plane. Specifically, we let σ1 =
σ2 = 1 and consider cases for σ3 = 0.5, 0.1 and the navigation
errors with βi = 1, 10 ∀i. Here, analytical results are computed
using (17). As expected, we note the improvement in steady
state position accuracy with decreasing positioning errors and
the vertical perturbation σ3.

Finally, we examine the UAV connectivity behaviour in a
Scenario 2 deployment with βi = 10 and a highly asymmetric
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Fig. 4: Distance from target CDF for OU control; imperfect
navigation (αi = 1, si = 1, σ1 = 1.3, σ2 = 1, σ3 = 0.7).
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Fig. 5: Distance from target CDF for OU control with imper-
fect navigation (αi = 1, si = 1, σ1 = σ2 = 1).

values σ1 = σ2 = 1, σ3 = 0.01. Fig. 6 shows the simulated
and analytical connectivity probability as a function of the
threshold SNR0/A. We consider the pathloss exponents of γ =
2 (with analytical results computed using (28)) and γ = 3, 4
(with analytical results computed using (27)). We note the
effects of the pathloss exponent on the connectivity probability,
with a dramatic reduction from γ = 2 to γ = 4. Noting the
logarithmic x-axis, we see a sharp reduction in connectivity
with increasing SNR threshold.

VI. CONCLUSION

3D mobility models based on stochastic differential equa-
tions, incorporating the mobility control mechanism, were
presented. Motivated by UAV flight data, for a symmetric
mobility model, we derived steady state distance distributions
for arbitrary control including closed form expressions for
the special cases of OU and OC control. The model was
extended to imperfect positioning and asymmetric control. For
an important scenario of partial symmetry (in the x-y plane),
we presented steady state position results for the OU control
and subsequently derived UAV connectivity probability results
based on a SNR criterion in a Rayleigh fading environment.
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Fig. 6: Connectivity probability vs SNR threshold SNR0/A
(αi = 1, si = 1, σ1 = σ2 = 1, σ3 = 0.01, βi = 10).

APPENDIX A
SYMMETRIC STEADY STATE DISTRIBUTION

The drift term in the FP equation is the 3D vector:

A(Xt, Yt, Zt) = −
(
v(Rt)

Rt

)
(Xt, Yt, Zt)

T (29)

and the diffusion term is B = σ2I3 [10, pp. 94-95]. From
[10, Eq. 6.2.7-6.2.11, p.141], we see that the steady state
distribution of the process in (1) depends on the functions

Zi(Xt, Yt, Zt) =

3∑
k=1

B−1ik

(
2Ak(Xt, Yt, Zt)

− ∂Bk1
∂Xt

− ∂Bk2
∂Yt

− ∂Bk3
∂Zt

)
, (30)

for i = 1, 2, 3 where B = (Bij) and Ak(Xt, Yt, Zt) is the kth

element of A(Xt, Yt, Zt). Substituting A(Xt, Yt, Zt) and B
into (30) gives

Zi(Xt, Yt, Zt) =
2Ai(Xt, Yt, Zt)

σ2
for i = 1, 2, 3.

From [10, Sec. 6.2.2] the steady state distribution f(x, y, z)
for (Xt, Yt, Zt) is given by the solution of

∂

∂ai
log {f(a1, a2, a3)} = Zi(a1, a2, a3) (31)

as long as the condition

∂Zi(x, y, z)

∂aj
=
∂Zj(x, y, z)

∂ai
(32)

is satisfied where (a1, a2, a3) = (x, y, z). Consider the exam-
ple i = 1, j = 2. Defining r =

√
x2 + y2 + z2 we have

∂Z1(x, y, z)

∂y
=
∂(−xv(r)/r)

∂y
=
xy

r3

(
v(r)− rv′(r)

)
,

and
∂Z2(x, y, z)

∂x
=
∂(−yv(r)/r)

∂x
=
xy

r3

(
v(r)− rv′(r)

)
.

Hence, the condition is satisfied for i = 1, j = 2 and the other
cases follow similarly. The solution of (31) is seen to be

f(x, y, z) = K0e
− 2V (r)

σ2 (33)

and can be verified by direct differentiation. For example

∂

∂x
log {f(x, y, z)} = − 2

σ2

∂

∂x
V (r) = − 2

σ2
v(r)

∂r

∂x

= −2v(r)x

σ2r
= Z1(x, y, z) (34)

which satisfies(31). Similarly differentiation with respect to y
and z verifies (33) as the solution.

APPENDIX B
DERIVATION OF THE 2D OU STEADY STATE DISTRIBUTION

Consider, for example, the SDEs for (Xt, ε1t), written in
matrix form as:

d

[
Xt

ε1t

]
= −

[
α1 α1

0 β1

] [
Xt

ε1t

]
dt+

[
σ1 0
0 s1

]
d

[
W1t

B1t

]
= −A

[
Xt

ε1t

]
+Bd

[
W1t

B1t

]
. (35)

From [10, Sec. 4.5.6] the solution to (35) is Gaussian where
thecovariancee matrix Σ of (Xt, ε1t)

T satisfies AΣ+ΣAT =
BBT . Solution of this gives (11) as required.
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